
v.0.9.7 (beta)

quince
u s e r g u i d e
english

d e v e l o p e r g u i d e
english

Thank you very much for your interest in quince !
quince is an open source software project initiated by Maximilian Marcoll
in 2010. It is released under the GNU General Public License. You should
have received a copy of the GNU General Public License along with
quince. If not, see http://www.gnu.org/licenses/. quince can be down-
loaded from the quince website at: http://quince.maximilianmarcoll.de.
The sources are available at http://github.com/mmax/quince. The quince
icon was designed by Stephane Leonard. If you come across any errors
in the documentation, bugs in the software itsself, if you need a plug-in
for quince that you can't develop yourself, or if you have any other ques-
tions, please write to quince@maximilianmarcoll.de. Thank you!

quince

2

Index
Introduction
 6

What is quince?
 6
Bye-bye Tape Recorder
 6
Structure
 7

The components of quince
 8
Pool
 8
QuinceObject
 9
Layers
 9
ContainerViews and ChildViews
 10
Types
 11
Fold / Unfold
 12
Functions
 13
Function Composer
 14
AudioFiles
 16
Players
 17

Plug-In Reference
 18
ContainerViews
 18

Common ContainerView Commands
 18
AutomationContainer
 20
CentContainer
 20
EnvelopeContainer
 21
FrequencyStandardContainer
 22
GlissandoContainer
 22
MarkContainer
 23
PitchContainer
 24
PitchCurveContainer
 24
PitchGridContainer
 25
TimeGridContainer
 26
VolumeStandardContainer
 28

Functions
 29
AlignOnFreq
 29
AlignOnVolume
 29
ApplyEnvelope
 30

quince

3

ApplyValuesFromSeq
 30
ApplyValueList
 31
Audio2Envelope
 31
ColorByKey
 32
CreateGridSequence
 33
EnvelopeGate
 36
EnvToSeq
 37
EqlDstrbtn_Freq
 38
EqlDstrbtn_Pitch
 38
EqlDstrbtn_Start
 39
EqlDstrbtn_Volume
 40
ExportDescriptionListing
 41
ExtractEnvSequence
 41
ExtractFrequencyVertexes
 42
FixGlissandoEndPoints
 42
FixGlissandoStartPoints
 43
Gate
 44
ImportFrequencies
 44
ImportMaxMSPCollForSingleParameter
 45
JoinByFrequency
 46
Legato
 46
LilyPondExport
 47
MapDynamicExpr
 47
Normalize
 48
OneVoiceLoudest
 48
PitchQuantization
 49
Quantization
 49
RemoveParameter
 50
ResampleEnvelope
 50
Seq2PitchCurve
 51
SetParameter
 51
Sets_Difference
 52
Sets_Intersection
 52
Sets_SymDiff
 53
Sets_Union
 53
Sets_UnionNoDoubles
 54
TempoChange
 54
TimeQuantization
 55
Transpose
 55

ChildViews
 56
SequenceChild
 56
AutomationChild
 58
GlissandoChild
 59
MarkChild
 59

quince

4

Players
 60
AudioFilePlayer
 60
CsoundPlayer
 60

Developing Plug-Ins for quince
 62
XCode settings
 62
Function Example
 64

API REFERENCE
 67
Function Reference
 67
ContainerView Reference
 69
ChildView Reference
 76
Player Reference
 81
QuinceObject Reference
 83
QuinceObjectController Reference
 87
QuinceDocument Reference
 90

Appendix
 93
A: Reserved Parameter Identifiers.
 93

quince

5

Introduction

What is quince?

quince is a program for editing time based data on the mac. Although quince was devel-
oped to serve musical purposes, theoretically, not only audio but video and every other
time based data type can be edited in quince. Generally speaking, the main application for
quince is the creation and editing of sequences of events in time.

When I started to work with transcription in 2006, I started to develop my first editor
"mtc". Unfortunately "mtc" fell victim to the software-upgrade-paradox described by
David Porgue: "If you improve a piece of software enough times, you eventually ruin it."1.
That's exactly what happend to "mtc". After four years it just imploded. quince was devel-
oped in mtc's succession, out of the need for a program that could do things which I
would come up with in the future.

Thus, the great thing about quince is not only what it already can do, but also how easy it
is to add new functionality. quince was developed from a point of view which assumes
that a software for artisic tasks is always insufficient. There are always some features
missing and it almost never can exactly do what you need. Standard daws and sequenc-
ers are stable, powerfull and convenient, but they are also inflexible, in most cases not
extensible and for many tasks which are a bit off the main road, they are simply useless.
quince is not a substitution for a daw. If you're looking for a convenient tool to arrange
sounds and mix tracks, there are already some wonderful solutions out there. quince is
something different.

Bye-bye Tape Recorder

The biggest difference between quince and the standard daw is that quince does not oper-
ate in the 'tape recorder vs mixing desk'-paradigm. In quince there are no channels in
which audio data is arranged, and since there are no channels, there also is no need for a
mixer to mix them. Instead, quince presents it's contents in display strips which can con-
tain arbitrary numbers of layers of data.

Another big difference is that quince is not limited to the processing of audio data. quince
is able to handle all time based data types. Whether an event represents a video clip, an
audio file, or whether the event should trigger the execution of a shell script is dependent
only on the existence of an appropiate plug-in. Please read on to learn why.

quince

6

1 David Porgue: "Simplicity sells", Februar 2006, TED.com

Structure

quince is based on a core, which handles basic operational tasks such as file and object
management, but which does not implement functionality that you can actually use to
work on sequences of events. The core does however provide an interface for plug-ins.
Almost all of the functionality of quince is implemented in plug-ins: There are display plug-
ins (ContainerViews and ChildViews), function plug-ins (Functions) and player plug-ins
(Players). quince is designed to be extensible, the interface to the core (the Quince API) is
very flexible and the amount of code that needs to be written to add a new plug-in is
minimal. quince may be an option for all those who have their own ideas on how to treat
their data, who are not satisfied with standard solutions and for those who are able to
write a few lines of code to implement custom functions on their own.

quince

7

The components of quince

Pool

quince manages all the data of a session (file) in the pool. The pool contains two tables: a
table with objects created by the user (on the left) and a table containing functions and
function graphs (on the right).

Below the tables there are a few buttons:

Fold Selection

	 Please read the chapter fold/unfold below for more information.

Remove Selection

	 Deletes the selected objets.

New Data File

	 Creates a new object of type DataFile, which can represent any file type.

New Object

	 Creates a new object of type QuinceObject with standard parameters.

Copy Selection

	 Duplicates the selected objects.

New Audio File

	 Creates a new object of type AudioFile with a reference to an audio file on disk.

New Object For Audio File

When an AudioFile is selected in the pool: Creates a new object of type QuinceOb-
ject with a reference to the selected AudioFile object. Read the chapter AudioFiles
below for more information.

Execute

Executes the selected function.

Since version 0.9.6 the pool automatically hides items (objects and functions) if they are
incompatible with the selection in the other table respectively. To reset the hidden items
press Command+Option+C.

quince

8

QuinceObject

In quince, data is represented in the form of objects, most of the are of type QuinceObject.
A QuinceObject is just a collection of parameters. A QuinceObject with default parame-
ters is an event, with a start, a duration, a name and a description. An event can contain
other events (subEvents or subObjects). An event with subEvents is called a sequence,
but it still is an object of type QuinceObject.

Parameter

A parameter is a pair of an identifier (key) like "volume" and a value, like -9dB. Every ob-
ject has a few standard parameters like name, start, duration and type, can have any
number of parameters and apart from a few reserved identifiers you can add any parame-
ter to an object. (See Appendix A for a list of reserved parameter identifiers.)

To see the parameters of an object, to change their values or to add a new parameter to
the object, select the object and open the inspector by clicking on the inspector icon in
the toolbar.

SubEvents

Every event can have subEvents. In quince there is no direct differentiation between a se-
quence and the events a sequence consists of. A sequence simply is an event with su-
bEvents. Accordingly, an event can contain subEvents which themselves contain su-
bEvents and so on. There is no limit to the depth of the object tree.

Strips

A strip is an area where layers can display data. A quince session can contain any number
of strips. When there is more than one strip in a session, there is one active strip which
reacts to user input (keyboard and/or mouse). The active strip is marked with a blue
frame. To create a new strip click on "Add Strip" in the toolbar. To remove the active strip,
click on "Remove Strip". A strip is represented in a StripController (which essentially is a
table with LayerControllers) which has buttons to add or remove layers.

Layers

A layer is where objects can actually be displayed and edited. Layers are represented in a
LayerController, containing a pop-up for choosing a ContainerView (see next chapter for
more information on ContainerViews), a button to load an object into the layer, a check

quince

9

box to hide/unhide the layer and a text field with the name of the currently loaded object.

A layer has to be active in order to react to user input. To
make a layer active, click in an empty area in the Layer-
Controller. The LayerController will become a little brighter
and the layer will become active. The position of the layer
in it's strip is irrelevant in this context. You can always edit
any layer, even if some other layers are displayed in front of
the one you want to edit.

To create a new layer or to remove the active layer of a
strip click on "+" or "-", respectively, in the lower part of
the StripController.

On the left to the "-" and "+" , you can activate/deactivate
guides in the strip and specify the range of the values, visi-
ble in the strip (vertical zoom).

ContainerViews and ChildViews

If there is an object loaded in a layer, it is being displayed by a ContainerView. Contain-
erViews are plug-ins that allow the display and editing of certain types of objects. If the
loaded object contains subEvents and if the selected ContainerView supports it, the ob-
ject's subEvents will be displayed too, using ChildView objects which can be selected
and edited inside the ContainerView.

To load an object into a ContainerView select a ContainerView in the LayerController, se-
lect an object in the object table of the pool and click on "load" in the LayerController of
the layer you want the object to be loaded into.

Some ContainerViews can only display certain types of objects. For instance, the Con-
tainerView "EnvelopeContainer" can only dispay objects of type Envelope. It will present
an error message if you try to load any other type of object.

For more information on the behaviour of ContainerViews, please read the chapter Con-
tainerViews in the Plug-In Reference.

quince

10

Types

The following integrated types are available:

AudioFile, a reference to an AudioFile on disc

DataFile, a reference to any kind of file on disc

Envelope, an object containing an array of volume values, typically generated analyzing
an AudioFile

PitchCurve, an object containing an array of frequency values

QuinceObject, the most basic object type in quince, that represents an event, or a se-
quence

In a future version, you will be able to integrate your own types as plug-ins into quince.

quince

11

Fold / Unfold

Events can be folded to a sequence. If you choose to fold a number of selected objects, a
new event is created and the selected objects are added as subObjects to the new ob-
ject. To fold selected objects in a ContainerView press 'f'. To unfold a previously folded
object in a containerView press Shift+'f'. (Actually it depends on the implementation of
the respective ContainerView plug-in if subObjects can be folded and unfolded. The Vol-
umeStandardContainer supports the folding of objects whereas the AutomationContainer,
for instance, does not.)

Two selected objects…

...folded into an new object.

You can also fold objects directly in the pool. Select the objects you want to fold in the
objects table of the pool and press the button labeled "Fold Selection".

quince

12

Functions

A function is a plug-in that carries out an operation. Functions can be executed out of the
pool, or by selecting the function from one of the two function menues "Selection" and
"Functions". In the "Selection" menu, only those functions are available which can be di-
rectly executed on a selection of subObjects in a ContainerView. In the "Function" menu,
all the Functions are available.

Most functions operate on objects which are handed over to them. If one starts a func-
tion, the FunctionLoader pops up. The FunctionLoader manages the ‘delivery’ of objects
to functions. It contains a list of objects the function expects. Each input object is de-
scribed with the expected type and the purpose of the object during the execution of the
function.

The function started in this example expects a single object of type AudioFile. It's pur-
pose for the function is described as "source". To hand over an appropiate object to the
FunctionLoader, select the object in the pool and click on "Load" in the FunctionLoader
window. The object will now be handed over to the FunctionLoader and it will show up in
the object list:

If all of the required objects are present, the "Action" button becomes active and the
function can be executed.

Functions which expect a single input object of type QuinceObject with the purpose
"source" can be started from the "Selection" menu to operate on a selection of objects in
a ContainerView directly (without the FunctionLoader popping up).

quince

13

Function Composer

Just like events can be folded into a sequence, you can combine functions into bigger
objects called FunctionGraphs. You can only combine two functions at a time, but since a
FunctionGraph acts just like a Function, you can combine a function with a Function-
Graph or a FunctionGraph with another FunctionGraph to create very powerful and com-
plex tools.

Two functions get combined by linking the output of a first function to the input of a sec-
ond. For two functions to be able to be combined into a FunctionGraph, the type of the
output of the first function must match the type of one of the input objects of the second
function.

To open the FunctionComposer click on it's icon in thetoolbar.

In the FunctionComposer, choose the source and target functions. If the two functions are
compatible, possible connecting objects (matching input objects of the target function)
will be displayed in the third pop-up (labeled "Input"). In the example above, the function
"Audio2Envelope" is being combined with the function "ApplyEnvelope".

The result of "Audio2Envelope" is an object of type Envelope. The function "ApplyEnve-
lope" expects an input object of type Envelope with the purpose envelope and a Quin-
ceObject with the purpose "target". The only matching object is the envelope. In the text
field you can enter the name of the resulting FunctionGraph. Click on the button labeled
"Create FunctionGraph" to create the FunctionGraph. It will be added to the function ta-
ble of the pool.

If the new FunctionGraph is executed, the FunctionLoader asks for two objects:

quince

14

The function Audio2Envelope needs an object of type AudioFile, the function ApplyEnve-
lope, in addition to the envelope provided by Audio2Envelope, needs an object of type
QuinceObject with the purpose "target" on which the envelope should be applied.

quince

15

AudioFiles

Below the StripControllers there is a small black text field. By default it contains the string
"no reference".

If you load an audio file into the pool and select it, the text in the text field changes to the
name of the selected audio file object.

This indicates that you now have a refence to an audio file object: SubObjects created in
a ContainerView whilst having a reference to an audio file object will get an additional pa-
rameter with the identifier "MediaFileName". It's value will be the name of the selected
audio file object. If the session is played back (and if an appropiate player is chosen), the
subObject's refered audio file will be played. Of course you can remove the reference at
any time.

You can also create an object with a reference to an audio file directly in the pool. Select
the audio file object you want to create a reference for and click on "New Object For
Audio File". If you now load this object into a containerView and play back the session,
the refered audio file will be played only if the object contains subObjects without media
(audio) file references of their own. To create such subObjects simply deselect the audio
file object in the pool (if not already done) and double click in the layer containing the ob-
ject with the refence to the audio file. Create a few subObjects of reasonable duration. If
you now play back the session these subObjects become windows into the audio file:
they inherit the audio file reference of their mother object and play it back using their own
start, duration and volume parameter values.

quince

16

Players

A player is a plug-in that plays back the session. Directly beneath the text field for the
media file reference display, there is a pop up for the selection of a player.

Some players will allow you to change their behaviour. Use the settings button on the
right to the menu to get access to a player's settings panel.

quince

17

Plug-In Reference

ContainerViews

ContainerViews are plug-ins which display objects in a layer. For information on layers
and on how to load an object into a layer, please read the chapter Layers above.

There are a few commands almost all ContainerViews understand. However, whether one
particular ContainerView understands these commands depends on it's implementation.

Common ContainerView Commands

Keyboard:

f / Shift + f

folds / unfolds selected subObjects.

m

mutes / unmutes selected subObjects.

SPACE

	 starts / stops playback.

ENTER

during playback: creates a new subObject at the current play back position.

or else: resets the cursor to 00:00:000.

TAB

selects the next subObject.

quince

18

Shift + TAB

selects the previous subObject.

Mouse

Double Click

creates a new subObject.

Mouse & Keyboard

Option-Drag

	 duplicates the selected subObjects.

Control-Drag

changes the duration of the selected subObjects. You can also pull on the right end
of ChildViews for the same result.

quince

19

AutomationContainer
The AutomationContainer provides an interface for the creation and editing of automation
data.

However, there is no plug-in that processes automation data. (Yet!)

CentContainer
The CentContainer provides an interface for the display and editing of cent deviation val-
ues of objects with frequency data.

quince

20

EnvelopeContainer

The EnvelopeContainer plug-in displays objects of type Envelope. The resolution of the
display changes with the zoom. You do not always see the same resolution, but you al-
ways see the same amount of detail (envelope frames per pixel) :

There is a function plug-in called ResampleEnvelope. Use it to limit the resolution of an
envelope.

To change the display colour of an envelope, double click on the envelope. Then choose
a colour in the colourpicker.

The same object at a different zoom setting:

quince

21

FrequencyStandardContainer
The FrequencyStandardContainer works in the same way as the VolumeStandardCon-
tainer, except that is displays frequency (linear) on its y-axis.

GlissandoContainer
The GlissandoContainer displays objects using the GlissandoChild view:

It uses the parameter pitchF (a floating point representation of midi pitch) for the position-
ing of objects on its y-axis, and the parameter pitchRange for their height.

Glissandi are organized using three parameters: frequency, frequencyB and glissandoDi-
rection. The glissandoDirection parameter determines which frequency value will be the
start point and which one will serve as the end point of the glissando. However, the value
of the parameter frequencyB must and will always be higher than the value of the parame-
ter frequency. Quince will swap the frequency and frequencyB values and toggle the glis-
sandoDirection automatically, if necessary. See the GlissandoChild reference for more in-
formation.

quince

22

MarkContainer
The MarkContainer provides a view for markings:

quince

23

PitchContainer
The PitchContainer works in the same way as the VolumeStandardContainer, except that
is displays pitch (midi pitch, logarithmic frequency) on its y-axis.

PitchCurveContainer
The PitchCurveContainer displays PitchCurves with the parameter pitch on the y-axis.
The pitches in PitchCurves can not actually be edited using the PitchCurveContainer. Just
as the EnvelopeContainer, the PitchCurveContainer was made for display only.

quince

24

PitchGridContainer
The PitchGridContainer displays Pitches of a sequences subObjects independently from
their respective start and duration values, as a grid. For a more detailed explanation how
GridContainerViews work in quince, please see the TimeGridContainer reference below.

quince

25

TimeGridContainer

The TimeGridContainer displays sequences as a series of grid points in time (without dura-
tions). It is intended for the use in the process of quantizing sequences. (For more informa-
tion on quantizing sequences please read the chapter Quantization in the Function Plug-In
Reference.)

The TimeGridContainer displays the time points to which subObjects would be pulled if
their surrounding sequence would be quantized using the displayed grid. In addition, it
also displays the time frames from which subObjects would be pulled onto the grid points:

Here is another example with an additional layer of events:

The red lines mark the grid
points

All events in the blue area will
be pulled to the red grid point
(if quantized).

All events in the grey area will
be pulled to the red grid point
(if quantized).

quince

26

After quantization with the displayed grid, the events are pulled to the grid points. In addi-
tion their durations will have changed accordingly:

quince

27

VolumeStandardContainer

The StandardVolumeContainer is a ContainerView with basic display and editing options
for events. Events (subObjects) are displayed using the SequenceChild plug-in (Child-
View) which displays objects as rectangular boxes which can be moved, extended, short-
ened, folded and unfolded. For more information on the SequenceChild plug-in please
read it's description in the ChildView reference.

quince

28

Functions
For information on how to execute functions and on how to pass an object to a function,
please read the chapter Functions in the introduction above.

Functions, whose output object is not explicitly specified, do not create a new object as a
result of their execution.

AlignOnFreq

Input

Purpose Type Description

source QuinceObect
The object whose subObjects should be
changed.

Sets the parameter frequency of all subObjects of the source to the frequency value of
the subObject with the lowest start value.

AlignOnVolume

Input

Purpose Type Description

source QuinceObect
The object whose subObjects should be
changed.

Sets the parameter volume of all subObjects of the source to the volume value of the
subObject with the lowest start value.

quince

29

ApplyEnvelope

Input

Purpose Type Description

target QuinceObect
The object whose subObjects should be
changed.

envelope Envelope
The envelope which should be applied to the
subObjects of the target.

Sets the parameter volume of all subObjects of the target to the value of the envelope at
the time of the respective subObject's start value. It is recommended to resample the en-
velope before using this function. "ApplyEnvelope" performs resampling on it's own if the
resolution of the envelope is higher than 5 ms per frame.

ApplyValuesFromSeq

Input

Purpose Type Description

target QuinceObect
The object whose subObjects should be
changed.

source QuinceObject
The object whose values should be applied to
the target.

Applies values of the source's subObjects (of a parameter chosen in a dialog) to the
subObjects of the target.

quince

30

ApplyValueList

Input

Purpose Type Description

target QuinceObect
The object whose subObjects should be
changed.

list DataFile
A DataFile object representing a text file with
values to be added to the target's subOb-
jects.

Interprets the contents of a text file as values for a parameter. The parameter is chosen in
a dialog window. Each line in the text file is assigned to one subobject of the target as a
value for the chosen parameter.
For example, if the textfile reads:

a
b
c

and you choose "name" as the parameter to assign values to and the target sequence
has three subObjects, those three subobjects will be named "a", "b" and "c".

Audio2Envelope

Input

Purpose Type Description

source AudioFile
The AudioFile object from which the envelope
should be extracted.

Output

Type Description

Envelope A new object with the envelope of the Au-
dioFile object.

Reads the samples of the source and creates a new object of type Envelope containing
the envelope of the AudioFile.

quince

31

ColorByKey

Input

Purpose Type Description

source QuinceObject
The object whose subObjects should be
changed.

Lets the user chose a parameter:

After a choice is made, ChildViews representing the subObjects of the soure will be col-
ored. Objects with the same values will get the same colors.

quince

32

CreateGridSequence

Input

Purpose Type Description

No Input

Output	

Type Description

QuinceObject A new object representing a grid for quantiza-
tion.

Using this function you can create a grid for quantization.

There are too tabs within this function's window: One for the creation of time grids and
one for creating pitch/frequency grids.

Time

The dividers refer to seconds. Using the checkboxes you can acivate or deactivate indi-
vidual dividers. The default assignement represents standard musical divisions: if one
second is one quarter note, the dividers correnspond to :

quince

33

1: quarter note 2: 8th 3: tripplet (8th) 4: 16th 5: quintuplet (16th) 6: 6tuplet (16th) 7: 7tuplet
(16th) 8: 32th

The resulting grid is displayed using colored bars:

Using the popup and the text field you can change individual dividers to create more
complicated grids:

Click on Done to create a sequence with the specified grid. If you check the "repeat grid"
box, the new object will be slightly longer than the longest obect in the pool.

quince

34

Pitch

In the Pitch tab of the grid, you can create grids for the quantization of frequencies. Again
there are two tabs: "Tempered" and "Other".

In the "Tempered" tab you can create grids using tempered scales of any resolution and
you can specify which base frequency should be used for the grid:

quince

35

EnvelopeGate

Input

Purpose Type Description

envelope Envelope
The envelope whose values should be proc-
essed.

Removes all values below a threshold from the given envelope. The threshold can be
specified in a dialog box.

The following envelope:

limited at -12dB:

quince

36

EnvToSeq

Input

Purpose Type Description

envelope Envelope The envelope to be converted.

Output	

Type Description

QuinceObject A new object containing subobjects for signifi-
cant changes in volume of the envelope.

EnvToSeq creates a Sequence containing objects for transients in the envelope. Upon
execution you will be presented with the following dialog window:

EnvToSeq uses internal resampling of the envelope to measure volume values. After that
it compares successive frames. The tolerance actually is the inverse ratio of two succes-
sive frames. The default duration is the duration of the newly created objects.

quince

37

EqlDstrbtn_Freq

Input

Purpose Type Description

source QuinceObject
The object whose subObjects should be
changed.

Creates an equal distribution of the subObjects of the source over the parameter fre-
quency

EqlDstrbtn_Pitch

Input

Purpose Type Description

source QuinceObject
The object whose subObjects should be
changed.

Creates an equal distribution of the subObjects of the source over the parameter pitch.

quince

38

EqlDstrbtn_Start

Input

Purpose Type Description

source QuinceObject
The object whose subObjects should be
changed.

Creates an equal distribution of the subObjects of the source over the parameter start:

quince

39

EqlDstrbtn_Volume

Input

Purpose Type Description

source QuinceObject
The object whose subObjects should be
changed.

Creates an equal distribution of the subObjects of the source over the parameter volume:

quince

40

ExportDescriptionListing

Input

Purpose Type Description

source QuinceObject
The object whose subobject's descriptions
are to be exported.

Output	

Type Description

Text FIle on disc A Text File containing a list of all the descrip-
tions of the source's subobjects

Creates a text file containing all the descriptions of the source's sobobjects.

ExtractEnvSequence

Input

Purpose Type Description

source QuinceObject
The object whose subObjects are to be ana-
lyzed.

Output	

Type Description

QuinceObject A new Sequence containing subObjects rep-
resenting the volume envelope of the source.

Creates a new sequence representing the volume envelope of the source. This will result
in data reduction whenever there are multiple simultaneous objects in the source.

quince

41

ExtractFrequencyVertexes

Input

Purpose Type Description

source QuinceObject
The object whose subObjects are to be ana-
lyzed.

Output	

Type Description

QuinceObject A new Sequence containing subObjects rep-
resenting frequency vertexes of the source.

Creates a new sequence with subObjects for each frequency vertex (change in frequency
direction) in the source.

FixGlissandoEndPoints

Input

Purpose Type Description

source QuinceObject
The object whose subObjects should be
changed.

Sets the glissando end frequencies of the subobjects of the source (values of the parame-
ter frequency or frequencyB) 2 to the glissando start frequencies of the respective next
subObject.

quince

42

2 depends on the value of the parameter glissandoDirection, see documentation for Glis-
sandoContainer for more information

FixGlissandoStartPoints

Input

Purpose Type Description

source QuinceObject
The object whose subObjects should be
changed.

Sets the glissando start frequencies of the subobjects of the source (values of the pa-
rameter frequency or frequencyB)2 to the glissando end frequencies of the respective pre-
vious subObject.

FoldByParameter

Input

Purpose Type Description

source QuinceObject The object to be processed.

Folds subobjects of the source object if they share the same value for a parameter chosen
in a dialog window.

quince

43

Gate

Input

Purpose Type Description

source QuinceObject The object to be processed.

Output	

Type Description

QuinceObject A new object containing copies of the subob-
jects of the source whose volume values are
above a threshold.

Creates a copy of an object and removes all subobjects whose volume values are below a
threshold.

ImportFrequencies

Input

Purpose Type Description

No Input

Output	

Type Description

QuinceObject A new object with frequency data from a data
file.

Asks for a file with frequency values and creates a new object with subObjects for the
frequency values.

understands two file formats:

Spear:	 Text	 	 "Resampled Frames"
Praat:	 Text	 	 Formants in "TextFile"

quince

44

ImportMaxMSPCollForSingleParameter

Input

Purpose Type Description

no input

Output	

Type Description

QuinceObject A new object containing subobjects for signifi-
cant changes in volume of the envelope.

Creates a new object containing subobjects with values from a MaxMSP coll file and de-
fault values specified in the following dialog:

quince

45

JoinByFrequency

Input

Purpose Type Description

source QuinceObject The object whose subobject are to be joined.

Output	

Type Description

QuinceObject A copy of the source whose subobjects are
joined if successive object's frequencies are
equal or within a given tolerance.

Legato

Input

Purpose Type Description

source QuinceObject
The object whose subObjects should be
changed.

Extends or shortenes the durations of the source's subObjects so that they follow up on
each other without any gaps:

quince

46

LilyPondExport

Input

Purpose Type Description

source QuinceObject The object to export.

Output	

Type Description

- A LilyPond Source File.

Exports the source as a source file for the LilyPond notation program (http://lilypond.org/).
Each subObject of the source becomes one note. In a dialog box you can specify which
parameters should be included in the code.

MapDynamicExpr

Input

Purpose Type Description

source QuinceObject
The object whose subObjects should be
changed.

Adds dynamik expressions to subobjects of the source by choosing volume ranges. The
LilyPondExport plug-in understands these expressions and can include them in the lily-
pond source.

quince

47

Normalize

Input

Purpose Type Description

source QuinceObject
The object whose subObjects should be
changed.

Normalizes the volume values of the source's subObjects, so that the subObject with the
highest volume has the value 0dB.

OneVoiceLoudest

Input

Purpose Type Description

source QuinceObject The object to process.

Output	

Type Description

QuinceObject A new object with copies of the loudest
subobjects of the source that are not overlap-
ping.

Creates a filtered version of the source, containing subobjects that are not overlapping.
The subobjects are chosen by comparison of their volume values.

quince

48

PitchQuantization

Input

Purpose Type Description

grid QuinceObect
The grid on which the victim should be quan-
tized.

victim QuinceObject
The object whose subObject should be quan-
tized.

Quantizes the victim onto the grid. PitchQuantization quantizes Frequency, Pitch and
Cent values.

The frequency values of the subObjects of the victim are being pulled onto the frequency
values of the subObjects of the grid.

Quantization

See: PitchQuantization or TimeQuantization

quince

49

RemoveParameter

Input

Purpose Type Description

source QuinceObject
The object whose subObjects should be
changed.

Removes the selected parameter from all subObjects of the source and from the source
itself.

ResampleEnvelope

Input

Purpose Type Description

envelope Envelope
The envelope whose resolution is to be lim-
ited.

In a dialog box you can specify a window duration (in milliseconds) to limit the envelope's
resolution.

quince

50

Seq2PitchCurve

Input

Purpose Type Description

source QuinceObject The object to transform into a PitchCurve

Output	

Type Description

PitchCurve The corresponding PitchCurve

Reads the sources frequency values and creates a PitchCurve (pitch envelope, see
PitchCurve documentation for details) that can be displayed using the PitchCurveCon-
tainer. When multiple frequency values are present (multiple subObject with frequency
values) at a given point in time, Seq2PitchCurve will choose the highest frequency value
for the PitchCurve.

SetParameter

Input

Purpose Type Description

source QuinceObject The object to change.

Sets a given parameter of the source and optionally it's subobjects to a given value.

quince

51

Sets_Difference

Input

Purpose Type Description

minuend QuinceObject The minuend of the operation. (a)

substrahend QuinceObject The substrahend of the operation. (b)

Output	

Type Description

QuinceObject A new object with the result of the operation.

An implementation of the set difference operation or the relative complement

! ! ! ! minuend - substrahend or a \ b

Sets_Intersection

Input

Purpose Type Description

a QuinceObject one set of the operation

b QuinceObject the other set of the operation

Output	

Type Description

QuinceObject A new object with the result of the operation.

An implementation of the set intersection operation a ∩ b

quince

52

Sets_SymDiff

Input

Purpose Type Description

a QuinceObject one set of the operation

b QuinceObject the other set of the operation

Output	

Type Description

QuinceObject A new object with the result of the operation.

An implementation of the set symmetric difference operation

! ! ! a ∆ b = (a \ b) ∪ (b \ a) = (a ∪ b) \ (a ∩ b)

Sets_Union

Input

Purpose Type Description

a QuinceObject one set of the operation

b QuinceObject the other set of the operation

Output	

Type Description

QuinceObject A new object with all subobjects of both input
objects.

An implementation of the set union operation a ∪ b .

quince

53

Sets_UnionNoDoubles

Input

Purpose Type Description

a QuinceObject one set of the operation

b QuinceObject the other set of the operation

Output	

Type Description

QuinceObject A new object with all subobjects of both input
objects, but guaranteed to be without dupli-
cates.

An implementation of the set union operation a ∪ b, without duplicates.

TempoChange

Input

Purpose Type Description

source QuinceObject The object to change.

Output	

Type Description

QuinceObject A new object with the start and duration val-
ues of its subobjects adjusted to the new
tempo.

quince

54

TimeQuantization

Input

Purpose Type Description

grid QuinceObect
The grid on which the victim should be quan-
tized.

victim QuinceObject
The object whose subObject should be quan-
tized.

Quantizes the victim onto the grid. (Currently Quantization only quantizes start and dura-
tion values. A more flexible version of Quantization will be released in the future.)

The start values of the subObjects of the victim are being pulled onto the start values of
the subObjects of the grid.

The durations of the subObjects of the victim will be changed, so that they match the
time between two subObjects in the grid.

Transpose

Input

Purpose Type Description

source QuinceObject The object to change.

Transposes the subobjects of the source object by a given interval or factor. Frequency,
Pitch and Cent values will be affected.

quince

55

ChildViews

SequenceChild

The SequenceChild is the ChildView plug-in used by the CentContainer, the Frequen-
cyStandardContainer, the PitchContainer and the VolumeStandardContainer. It displays
objects as two-dimensional boxes with a frame:

Selected objects are indicated by a colored frame:

quince

56

Folded objects are represented using slightly higher boxes. The red number on the left in-
dicates the number of subObjects in the object.

Using the function ColorByKey SequenceChild objects can be colored corresponding to a
parameter of their represented objects:

quince

57

AutomationChild

The AutomationChild is the ChildView used by the AutomationContainer. It displays ob-
jects as two-dimensional boxes without a frame. The width of the AutomationChild ob-
jects is not variable, they always have the same size.

quince

58

GlissandoChild

The GlissandoChild is used by the GlissandoContainer. It displays objects as rectangular
boxes with flexible width and height, representing duration and pitchRange values. Using
the orange handles you can change the dimensions of the objects. The red lines in the
boxes represent the direction of the glissando. To change the glissando direction
command-click on the box. Glissandi are organized using three parameters: frequency,
frequencyB and glissandoDirection. The glissandoDirection parameter determines which
frequency value will be the start point and which one will serve as the end point of the glis-
sando. However, the value of the parameter frequencyB must and will always be higher
than the value of the parameter frequency. Quince will swap the frequency and frequen-
cyB values and toggle the glissandoDirection automatically, if necessary.

MarkChild

The AutomationChild is used by the MarkContainer. It displays objects as yellow triangles.

quince

59

Players
Players will play only the visible objects of the currect session (if they support playback).

AudioFilePlayer

Searches for references to AudioFile objects and plays a QuinceObjects's corresponding
audio file. Please read the chapter AudioFiles above for more information on audio file
references.

The parameters used for referencing to AudioFiles by the AudioFilePlayer are mediaFile-
Name and mediaFileStart (optional).

CsoundPlayer

The CsoundPlayer uses an actual instance of Csound3 to render the visible sequences in
realtime. You do not need to have Csound installed on your system in order for the
CsoundPlayer to work. Csound is built right into this player.
In the settings window you can edit the .sco and .orc files.

In the score, all parameters which playable objects (objects visible in the project window
that support playback) have in common are listed. Thus, it may be necessary to create
"dummy" parameters in some objects to get all information you need printed into the score.

You also may have to change the p-field references in the orc file to match the order in the
score.

The instrument used to synthesize sequences is chosen in a drop down menu in the
player's settings window:

quince

60

3 see http://csounds.com/ for more information on csound.

It is possible though, to overwrite this default synthesis method for individual objects of the
session. Use the parameter csoundMode to "hard-wire" a synthesis method for an object.
Possible values are: "AudioFiles", "Clicks", "Glissando" and "Pitches". This list is likely to
be extended in the future when more built-in modes are required.

Of course, custom csound instruments can be added to the orc, too. To make the
CsoundPlayer play an object with a custom instrument, use the parameter csoundInstru-
mentNumber with the respective number as its value.

quince

61

Developing Plug-Ins for quince
Plug-Ins for quince are written in Objective-C using the Cocoa and quince APIs. In order to
create a new Plug-In you have to subclass one of the quince Plug-In classes. The API is
written in such a way that by subclassing a Plug-In class, you already have a fully func-
tioning Plug-In. You only have to implement methods and functionality that deviates from
the default implementations.

XCode settings

The designated XCode project template is "Bundle". In the New Project Dialog choose
Mac OS X:Frameworks & Library:Bundle (Cocoa).

quince

62

In the target settings you will have to change the target identifier (in the properties tab).

For a FunctionPlug-In the identifier should be:

	 	 	 	 	 QuinceFunctionBundle

For a ContainerView Plug-In the identifier should be:

	 	 	 	 	 QuinceContainerViewBundle

For a ChildView Plug-In the identifier should be:

	 	 	 	 	 QuinceChildViewBundle

And for a Player Plug-In the identifier should be:

	 	 	 	 	 QuincePlayerBundle

There are a few basic things you need to be aware of when developing Plug-Ins for
quince:

• You will have to link against the QuinceApi.framework. After installing quince, it is stored
in /Library/Frameworks/QuinceApi.framework .

• All the quince-API classes are fully KVC compliant. If you don't know what KVC means,
please have a look at the "Key-Value Coding Programming Guide" that comes with the
Apple Developer Documentation. You shouldn't need to create any instance variables or
properties in your subclass. Instead I recommend the use of the KVC methods of the re-
spective quince-API class.

• quince Plug-Ins have to be stored in /Library/Application Support/quince/ . If you store
your custom Plug-Ins in any other place, quince will not be able to find them.

quince

63

Function Example

For creating a FunctionPlug-In you have to subclass Function.

Typically your header file would look something like this:

#import <Cocoa/Cocoa.h>
#import <QuinceApi/Function.h>
#import <QuinceApi/QuinceObject.h>

@interface myQuinceFunctionPlugIn : Function {
}

//...

@end

There is only very little you have to do to create a simple FunctionPlug-In for quince.

Here is the complete code of the Normalize FunctionPlug-In:

@implementation Normalize

-(void)perform{
!
! double max=-666, candidate, vol;
! QuinceObject * mother = [self objectForPurpose:@"source"];
!
! for(QuinceObject * quince in [mother valueForKey:@"subObjects"]){
! ! candidate = [[quince valueForKey:@"volume"]doubleValue];
! ! if(candidate > max) max = candidate;
! }
! for(QuinceObject * quince in [mother valueForKey:@"subObjects"]){
! ! vol = [[quince valueForKey:@"volume"]doubleValue] - max;
! ! [quince setValue: [NSNumber numberWithDouble:vol]
! ! ! forKey:@"volume"];
! }
!
! [self setOutputObjectToObjectWithPurpose:@"source"];
! [self done];
}

@end

That's it! Now let's discuss the code in detail...

quince

64

For a simple Function like Normalize there is only one method you have to override: per-
form.

First of all we declare three variables, max, candidate and vol to determine the peak vol-
ume values and to compute the new volume values.

double max=-666, candidate, vol;

Now we need data to operate on. A FunctionPlug-In does not necessarily need input ob-
jects. However, if it does, the objects selected by the user can be accessed using the ob-
jectForPurpose: method of the Function class.
The input objects of a FunctionPlug-In are described with a type and a purpose (see the
documentation of the inputDescriptors method in the API reference below). Function, by
default, expects a single input object of type QuinceObject with it's purpose set to
source. The Normalize Function is going to normalize the SubObjects of one single ob-
ject, so the default is sufficient. To get the object to operate on, we call the objectForPur-
pose: method with the purpose source.

QuinceObject * mother = [self objectForPurpose:@"source"];

Now we have to determine the peak volume, so we step through the mother's subObjects
and look for the highest volume value.

for(QuinceObject * quince in [mother valueForKey:@"subObjects"]){
! candidate = [[quince valueForKey:@"volume"]doubleValue];
! if(candidate > max) max = candidate;
}

Now that we have our maximum, we need to change all the subObject's volume values
accordingly. In quince, the parameter volume is specified in dB. Since the peak volume
we want our object to have after the normalization process is 0dB, we can simply sub-
stract the current maximum value from each subObject's volume value.

for(QuinceObject * quince in [mother valueForKey:@"subObjects"]){
! vol = [[quince valueForKey:@"volume"]doubleValue] - max;
! [quince setValue: [NSNumber numberWithDouble:vol] forKey:@"volume"];
}

We're almost done. Since we did not create a new output object, we now have to make
sure that the object we operated on is turned into the output object of our function.

quince

65

[self setOutputObjectToObjectWithPurpose:@"source"];

Now we are done. And to tell quince, we call done :

[self done];

If you are creating a more complex FunctionPlug-In, you might need to call a few other
methods. See the Function API reference for a description of the public Function meth-
ods.

quince

66

API REFERENCE
Not all of the class's methods are covered in the API Reference. If you need something
that is not documented here, you should double check if you really are on the right track.
If you are sure that you are, however, you should have a look at the respective header file
(the header files are stored in /Library/Frameworks/QuinceApi/headers/)

Function Reference

-(void)perform;

! Has to be overridden by subclasses, performs the actual task.

-(NSMutableArray *)inputDescriptors;

Should return an array with one NSDictionary object for each input object needed
for the function to operate.
Each dictionary should contain one string describing the purpose of the input object
for the key: purpose (e.g. grid in case of a quantization function) and one string with
the type of the input object for the key: type (e.g. QuinceObject).
The default implementation has one input of type QuinceObject for the purpose
source.

The function ApplyEnvelope expects an Object of type Envelope for the purpose en-
velope and a QuinceObject with the purpose target. Its inputDescriptors method
looks like this:

-(NSMutableArray *)inputDescriptors{
!
! NSMutableDictionary * dictA = [[NSMutableDictionary
! ! ! ! ! ! ! ! alloc]init];
! [dictA setValue:@"target" forKey:@"purpose"];
! [dictA setValue:@"QuinceObject" forKey:@"type"];
!
! NSMutableDictionary * dictB = [[NSMutableDictionary
! ! ! ! ! ! ! ! alloc]init];
! [dictB setValue:@"envelope" forKey:@"purpose"];
! [dictB setValue:@"Envelope" forKey:@"type"];
!
! NSMutableArray * ipd = [[NSMutableArray alloc]
! ! ! ! ! ! ! initWithObjects:dictA, dictB, nil];
! [dictA release];
! [dictB release];
! return [ipd autorelease];
}

quince

67

-(QuinceObject *)outputObjectOfType:(NSString *)type;

Call this method if you need to create a new Object as a result of your function. In
some situations quince will supply a Function with an object to use as the output ob-
ject. Using this method, you will get the designated result object or a new empty ob-
ject of the specified type if there was no result object given to your function.

-(NSString *)outputType;

If your function creates a new object as a result, which is not of type QuinceObject
you have to override this method to return the appropriate type as a String (e.g.
@"Envelope").

-(BOOL)needsInput;

If your function creates a new object and does not need any input objects, override
this method to return NO. The default is YES

-(QuinceObject *)objectForPurpose:(NSString *)purpose;

Call this method to get an object serving your function as input for a specific pur-
pose as defined by the inputDescriptors

-(void)setOutputObjectToObjectWithPurpose:(NSString *)purpose;

If your function does NOT create a new output object, but operates on a given ob-
ject directly, call this method from your perform method with the purpose-key identi-
fying the object you operate on. (see the Normalize example above)

-(void)done;
You need to call this method when you are done processing your task!

-(id)valueForKey:(NSString *)key;
-(void)setValue:(id)value forKey:(NSString *)key;

KVC methods. Use these in case you need to keep track of any objects. If you don't
know what KVC means, please have a look at the "Key-Value Coding Programming
Guide" that comes with the Apple Developer Documentation.

quince

68

ContainerView Reference

-(void)drawRect:(NSRect)rect;!

Override this method to perform custom drawing. Call [super drawRect:rect] if
you want to include default behaviour.

-(id)valueForKey:(NSString *)key;
-(void)setValue:(id)value forKey:(NSString *)key;

KVC methods. If you don't know what KVC means, please have a look at the "Key-
Value Coding Programming Guide" that comes with the Apple Developer Documen-
tation.

-(id)initWithFrame:(NSRect)frame;!

Override this method to perform custom initialitzation. However, do not forget to call
[super initWithFrame:frame] at the beginning!

-(void)mouseDown:(NSEvent *)event;

Override this method to react to custom mouse events. If you want to include stan-
dard mouse behaviour, you have to call [super mouseDown: event] at the begin-
ning of your method.

-(void) insertText:(NSString *)string;

If your ContainerView Plug-In should react to custom keyboard events, override this
method. If you want to include standard keyboard behaviour, you have to call
[super insertText: string] in your method.

-(NSString *)parameterOnY;

Override this method to specify what parameter the receiver is representing on the
y-axis. The default return value is "volume".

-(BOOL)allowsVerticalDrag;

Returns a boolean indicating wether the receiver allows vertical dragging of Child-
Views. The default is YES.

quince

69

-(BOOL)allowsHorizontalDrag;

Returns a boolean indicating whether the receiver allows horizontal dragging of
ChildViews. The default is YES.

-(BOOL)showGuides;!

Returns a boolean indicating wether the receiver should show any guide lines (if
possible). The default is YES.

-(BOOL)allowsNewSubObjectsToRepresentAudioFiles;

Returns a boolean indicating whether the receiver allows subObjects created from
within the receiver to have a reference to an AudioFile. The default is NO.

-(ChildView *)childViewForPoint:(NSPoint)point;

Returns the ChildView whose frame surrounds the given point.

-(NSArray *)types;

Override this method if your ContainerView Plug-In should only be able to display a
special selection of object types. The default return value is an array containing
@"QuinceObject".

-(NSString *)defaultChildViewClassName;

Returns a string specifying the type of ChildView the receiver uses to represent
subObjects of the represented object. The default return value is SequenceChild.

-(NSString *)defaultObjectClassName;

Returns a string specifying the type of object the receiver creates as subObjects of
the represented object. The default return value is QuinceObject.

-(NSPoint)convertPoint:(NSPoint)clickLocation
! ! ! ! ! toChildView: (id)childView;!

Returns an NSPoint struct specifying the given clickLocation relative to the coordi-
nate system of the given ChildView.

quince

70

-(void)clear;

	 Removes the object currently displayed from the receiver.

-(ChildView *) createChildViewForQuinceObjectController:
! ! ! ! ! (QuinceObjectController *)mc;

Creates and returns a new ChildView object of the type specified in the
defaultChildViewClassName method.

-(ChildView *)childViewWithController:(QuinceObjectController *)mc;

Returns the ChildView that is controlled by the given controller, if it exists. Returns
nil otherwise.

-(NSArray *) childViewsInRect:(NSRect) rect;

Returns an array with all the ChildViews whose frames intersect with the given rec-
tangle.

-(NSMutableDictionary *)dictionary;

Returns the receiver's internal NSDictionary object.

-(void)selectChildView:(ChildView *)childView;

Selects the given ChildView.

-(void)deselectChild:(ChildView*)child;

Deselects the given CildView if it is selected.

-(void)deselectAllChildViews;

Deselects all selected ChildViews if there are any.

-(void)selectChildViews:(NSArray *)someChildViews;

Selects all ChildViews contained in the given array.

-(void)selectAllChildViews;

quince

71

Selects all of the receiver's ChildViews.

-(NSMutableArray *)childViews;

Returns an array containg all the receiver's ChildViews.

-(NSRect)unionRectForArrayOfChildViews:(NSArray *)views;

Creates and returns a NSRect struct specifying the rectangle surrounding the Child-
Views contained in the given array. Returns NSZeroRect if the array is empty.

-(NSRect) unionRectForSelection;

Creates and returns a NSRect struct specifying the rectangle surrounding the re-
ceiver's selected ChildViews. Returns NSZeroRect if there is no selection.

-(BOOL)allowsHorizontalResize;!

Returns a bollean indicating whether the receiver allows horizontal resizing of Child-
Views. The default value is YES.

-(BOOL)allowsVerticalResize;

Returns a bollean indicating whether the receiver allows vertical resizing of Child-
Views. The default value is NO.

-(void)duplicateSelection;

Creates duplicates of the selected objects, deselects the selected objects and se-
lects the duplicates.

-(NSArray *)selection;

Returns an array containg the receiver's currently selected ChldViews.

-(void)removeChildViews:(NSArray *)obsoleteChildViews;

Override this method to perform custom actions when removing ChildViews from
the receiver.

quince

72

-(void)sortChildViewsLeft2Right;

Sorts the receiver's internal ChildViews array by position from left to right.

-(void)scaleByX:(float)diffX andY:(float)diffY;

Override this method to scale any custom content of your view.

-(void)updateViewsForCurrentSize;

Override this method to provide different display resolutions depending on the cur-
rent zoom setting.

-(void)presentAlertWithText:(NSString *)message;

! Creates and displays an alert panel with the given error message.

-(NSString *)keyForLocationOnXAxis;

Returns a string with the key (description) of the receiver's parameter represented by
a ChildView's position on the receiver's y-axis. The default is start. Should not be
changed.

-(NSString *)keyForLocationOnYAxis;

Returns a string with the key (description) of the receiver's parameter represented by
a ChildView's position on the receiver's y-axis. The default is volume.

-(NSString *)keyForSizeOnXAxis;

Returns a string with the key (description) of the receiver's parameter represented by
a ChildView's width. The default is duration. Should not be changed.

-(NSString *)keyForSizeOnYAxis;

Returns a string with the key (description) of the receiver's parameter represented by
a ChildView's height. The default is nil.

-(NSNumber *)convertXToTime:(NSNumber *)x;

Returns the time value of the given x-coordinate-value in the receiver's coordinate
system.

quince

73

-(NSNumber *)convertTimeToX:(NSNumber *)time;

Returns the x-coordinate-value of the receiver's coordinate system for the given
time value.

-(NSNumber *)convertYToVolume:(NSNumber *)y;

Returns the volume value (in dB) of the given y-coordinate-value in the receiever's
coordinate system.

-(NSNumber *)convertVolumeToY:(NSNumber *)dB;

Returns the y-coordinate-value of the receiver's coordinate system for the given vol-
ume (dB) value.

-(NSNumber *)convertVolumeToYDelta:(NSNumber *)dB;

Returns the position difference on the receiver's y-axis for the given volume change.

-(NSNumber *)parameterValueForX:(NSNumber *)x;

Returns the receiver's value of the parameter represented on the receiver's x-axis
corresponding to the given x coordinate value. Equivalent to convertXToTime: .

-(NSNumber *)parameterValueForY:(NSNumber *)y;

Returns the receiver's value of the parameter represented on the receiver's y-axis
corresponding to the given y coordinate value. Calls convertYToVolume: by de-
fault.

-(NSNumber *)xForParameterValue:(NSNumber *)p;

Returns the receiver's x-coordinate-value for the given value of the receiver's pa-
rameter represented on it's x-axis. Equivalent to convertTimeToX: .

-(NSNumber *)yForParameterValue:(NSNumber *)p;

Returns the receiver's y-coordinate-value for the given value of the receiver's pa-
rameter represented on it's y-axis. Calls convertVolumeToY: by default.

quince

74

-(NSNumber *)xDeltaForParameterValue:(NSNumber *)p;

Returns the position difference on the receiver's x-axis for the given value of the pa-
rameter represented on the receiver's x-axis. Equivalent to convertTimeToX: .

-(NSNumber *)yDeltaForParameterValue:(NSNumber *)p;

Returns the position difference on the receiver's y-axis for the given value of the pa-
rameter represented on the receiver's y-axis. Calls convertVolumeToYDelta: by
default.

quince

75

ChildView Reference

-(NSRect) rect;

Returns an NSRect struct containing the receiver's surrounding rectangle;

-(NSRect) redrawRect;

Returns an NSRect struct containing a rectangle that is two pixels larger on every
side than the rectangle returned by the rect method.

-(void) setLocation:(NSPoint)point;

Sets the receiver's location to the given point in the coordinate system of the en-
closing ContainerView.

-(NSPoint) location;

Returns the receiver's location in the coordinate system of the enclosing Contain-
erView.

-(void)! setFrameColor:(NSColor *)c;

A convenience method. Actually calls setValue: forKey: .

-(NSColor *)frameColor;

A convenience method. Actually calls valueForKey: .

-(void) setInteriorColor:(NSColor *)c;

A convenience method. Actually calls setValue: forKey: .

-(NSColor *)interiorColor;

A convenience method. Actually calls valueForKey:.

-(void)setSelectionColor:(NSColor *)color;

quince

76

A convenience method. Actually calls setValue: forKey: .

-(NSColor *)selectionColor;

A convenience method. Actually calls valueForKey.

-(id)valueForKey:(NSString *)key;!! ! ! ! !
-(void)setValue:(id)value forKey:(NSString *)key;!

KVC methods. If you don't know what KVC means, please have a look at the "Key-
Value Coding Programming Guide" that comes with the Apple Developer Documen-
tation.

-(int)minimumWidth;

Override this method to return a different minimum width.

-(int)minimumHeight;

Override this method to return a different minimum height.

-(int)maximumWidth;

Override this method to return a different maximum width.

-(int)maximumHeight;

Override this method to return a different maximum height.

-(NSRect) resizeXCursorRect;

The resizeXCursorRect describes the rectangle in which the mouse pointer is
changed to the resize cursor.

-(float) height;

Returns the receiver's frame's height.

-(float) width;

Returns the receiver's frame's width.

quince

77

-(NSSize) size;

Returns a NSSize struct containing the receiver's size.

-(void) setHeight:(float)h withUpdate:(BOOL)b;

Sets the receiver's frame's height to the given value. If b is YES the new height is
being communicated to the represented object resulting in a value change of the pa-
rameter represented on the enclosing view's y-axis.

-(void) setWidth:(float)w withUpdate:(BOOL)b;

Sets the receiver's frame's width to the given value. If b is YES the new width is be-
ing communicated to the represented object resulting in a value change of the pa-
rameter represented on the enclosing view's y-axis.

-(float) foldedItemHeight;

ChildViews representing QuinceObjects that contain subObjects can be drawn with
a different height. Override this method to specify the default height for the repre-
sentation of folded QuinceObjects.

-(ContainerView *)enclosingView;

Returns the ContainerView that the receiver is a subView of.

-(void) draw;

Performs the drawing of the receiver.

-(void) moveX:(float)x;

Shifts the x-value of the receiver's location by the given value.

-(void) moveY:(float)y;

Shifts the y-value of the receiver's location by the given value.

-(void)select;

quince

78

Marks the receiver as selected. Results in the receiver's frame being drawn in the
selectionColor.

-(void)deselect;

Marks the receiver as not selected. Results in the receiver's frame being drawn in
the default frameColor.

-(BOOL)selected;

Returns a boolean indicating whether the receiver is marked as selected or not.

-(void)resize:(NSValue *)deltaValue;

Resizes the receiver's frame by the width and height values in the given NSValue ob-
ject which is expected to contain a NSSize struct.

-(void)scaleByFactorsInSize:(NSValue*)val;

Scales the receiver's width and height by the factor in the given NSValue object
which is expected to contain a NSSize struct.

-(void)scaleX:(float)x;

Scales the receiver's width by the given factor.

-(void)scaleY:(float)y;

Scales the receiver's height by the given factor.

-(BOOL)allowsHorizontalResize;

Returns a boolean indicating whether the receiver allows horizontal resizing. The de-
fault is YES.

-(BOOL)allowsVerticalResize;

Returns a boolean indicating whether the receiver allows vertical resizing. The de-
fault is NO.

-(NSPoint)center;

quince

79

Returns the center point of the receiver's frame.

-(QuinceObjectController *)controller;

Returns the QuinceObjectController controlling the QuinceObject represented by the
receiver.

-(void)setVisible:(NSNumber *)v;

If the NSNumber object contains a non-zero value, the receiver is visible. Otherwise
the the receiver will be hidden.

quince

80

Player Reference

The Player class creates a MusicSequence which is played by a MusicPlayer during
playback. You can override the createEventForQuince: method if you want to
perform custom actions or implement special cases for creating an event in the Mu-
sicSequence.

However, in order to create a Quince Player Plug-In you only need to override one
single method: playQuince:.
This method will be called for every QuinceObject your player should play.

-(OSStatus)createEventForQuince:(QuinceObject *)quince inTrack: (Music-
Track)track;

Override this method to implement custom behaviour during the creation of events
in a Track of a MusicSequence.

-(void)checkQuince:(QuinceObject *)quince;

If the playback startTime is between the start and end of a QuinceObject, this
method changes the start and startOffset values accordingly.

-(BOOL)isPlaying;

Return a boolean indicating whether the player is currently playing or not.

-(MusicSequence)sequence;

Returns the MusicSequence object used to play the session.

-(MusicPlayer)player;

Returns the MusicPlayer object used to play the MusicSequence representing the
session.

-(void)play;

Starts playback.

quince

81

-(void)stop;

Stops playback.

-(void)getSampleTimeBase;

Stores the current sampleTimeBase in the instance variable sampleTimeBase as a
Float64. You will need it if you want to set up a timestamp when playing quince ob-
ject using an AudioQueue:

! AudioTimeStamp time;
! double relativeStartTime =
! ! [[quince valueForKey: @"start"] doubleValue]
! ! - [[self startTime] doubleValue];

! time.mFlags = kAudioTimeStampSampleTimeValid;
! time.mSampleTime = relativeStartTime *44100 + sampleTimeBase + 1000;
!
! err = AudioQueueStart (aqData.mQueue, &time);
!

You could call AudioQueueStart() passing NULL instead of an AudioTimeStamp
to tell the system to commence playback of the queue as soon as possible. That
however, would result in considerable drops in playback quality. Using an Audio-
TimeStamp in the way shown above (including a small offset!) will result in sample
accurate playback.

-(void)playQuince:(QuinceObject *)quince;

The method actually playing a QuinceObject. This is where you implement your
playback algorithms.

@property (assign) QuinceDocument * document;

You can access the QuinceDocument holding the session using this property.

@property (retain) NSNumber * startTime;

The time when playback is to start.

quince

82

QuinceObject Reference

-(QuinceObjectController *)controller;

Returns the receiver's controller object.

-(QuinceDocument *)document;

Returns the QuinceDocument object the receiver is a part of.

-(long)subObjectsCount;

Returns the number of subObjects stored in the receiver.

-(NSString *)type;

Returns a String describing the receiver's type.

-(NSString *)getSuperType;

Returns a String describing the type of the receiver's superObject. If the receiver
does not have a superObject, this method returns the receiver's type instead.

-(NSNumber *)end;

Returns the receiver's end time in seconds.

-(QuinceObject *)mediaFile;

Returns the mediaFile object the receiver is associated with. If the receiver does not
have a reference to a mediaFile nil is returned instead.

-(NSNumber *)mediaFileStart;

The start time (in seconds) of the associated mediaFile at which playback is to start
when playing back the receiver.

-(NSArray *)allKeys;

Returns an array containing all keys of the receiver's internal dictionary.

quince

83

-(NSArray *)subObjectKeys;

Returns an array containing all keys of the receiver's subobjects' dictionaries.

-(NSArray *)allKeysRecursively;

Returns an array containing all keys of the receiver and its subobjects' dictionaries
as well as their subobjects' dictionaries etc…

-(NSMutableDictionary *)xmlDictionary;

Returns a dictionary which is compatible with the xml format of the NSDictionary
class. The returned object contains all key - value - pairs which would be stored to
disc as part of the document.

-(QuinceObject *)superObject;

Returns the receivers superObject, if it has one. Returns nil otherwise.

-(BOOL)isFolded;

Returns YES if the receiver has any subObjects. Returns NO otherwise.

-(BOOL)isChild;

Returns YES if the receiver has a superObject. Returns NO otherwise.

-(NSNumber *)duration;

Convenience method. Returns the receiver's value for the key duration.

-(NSNumber*) amplitude;

Returns a linear amplitude value of the receiver's volume (dB) value (0-1).

-(void)setValue:(id)aValue forKey:(NSString *)aKey;
-(id)valueForKey:(NSString *)key;
-(void)removeObjectForKey:(NSString *)key;

quince

84

KVC methods. If you don't know what KVC means, please have a look at the "Key-
Value Coding Programming Guide" that comes with the Apple Developer Documen-
tation.
See Appendix XYC for a list of standard keys.

-(void)recursivelyRemoveObjectForKey:(NSString *)key;

Removes the given key-value-pair from the receiver, from all of it's subObjects, their
subObjects etc...

-(QuinceObject *)objectWithValue:(id)value forKey:(NSString *)key;

Returns the receiver or one of it's subObjects if it matches the given key-value-pair.
If no such subObject is found, nil is returned instead.

-(NSArray *)subObjectsAtTime:(NSNumber *)time;

Returns an array containing all the receiver's subObjects whose start points are be-
fore the given time and whose end points are after that point.

-(NSArray *)frequencyValuesForTime:(NSNumber *)time;

Returns an array containing all the receiver's subObject's frequency values at the
given time.

-(NSArray *)amplitudeValuesForTime:(NSNumber *)time;

Returns an array containing all the receiver's subObject's linear amplitude values at
the given time.

-(NSArray *)volumeValuesForTime:(NSNumber *)time;

Returns an array containing all the receiver's subObject's volume (dB) values at the
given time.

-(NSNumber *)mostIntenseFrequencyForTime:(NSNumber *)time;

Returns the frequency value of the receiver's subObject with the highest volume
value at the given time. Returns nil if there is subObject for the given time.

-(NSArray *)valuesForKey:(NSString *)key forTime:(NSNumber *)time;

quince

85

Returns an array containing all the receiver's subObject's values for the given key at
the given time.

-(void)sortByKey:(NSString *)key ascending:(BOOL)asc;

Sorts the receiver's subObjects array by the given key and order.

-(void)sortChronologically;

Convenience method. Sorts the receiver's subObjects array by the key start in as-
cending order.

-(NSArray *)arrayWithValuesForKey:(NSString *)key;

Returns an array with all of the receiver's subObject's values for the given key.

-(void)delayStartBy:(double)delay;

Adds the given time to the receiver's start value.

-(BOOL)containsFoldedSubObjects;

Returns a boolean indicating whether the receiver contains any subObjects which
themselves contain subObjects.

-(void)flatten;

Unfolds any subObjects the receiver or it's subobjects may have. After calling this
method containsFoldedSubObjects will always return NO.

-(void)log;

Prints a description of the receiver to the console.

quince

86

QuinceObjectController Reference

-(void)addSubObjectWithController:(QuinceObjectController *)mc
withUpdate:(BOOL)b;

Use this method to add SubObjects to the controller. If you are going to repeat this
many times on the same controller object, you may want to set b to NO and update
the controller "manually" afterwards by calling update (see below).

-(void)removeSubObjectWithController:(QuinceObjectController *)mc
withUpdate:(BOOL)b;

Use this method to remove SubObjects to the controller. If you are going to repeat
this many times on the same controller object, you may want to set b to NO and
update the controller "manually" afterwards by calling update (see below).

-(NSArray *)controllersForSubObjects;

Returns an array containing the controllers of the SubObjects of the object con-
trolled by the receiver.

-(void)update;

Makes the receiver update its content object, recomputing it's duration and possibly
other parameters.

-(void)foldChildViews:(NSArray *)childViews inView:(ContainerView
*)view;

Call this method if you want to implement custom folding behaviour in your Contain-
erView Plug-In.

-(void) unfoldChildViews:(NSArray *)childViews inView:(ContainerView
*)sourceView;

Call this method if you want to implement custom unfolding behaviour in your Con-
tainerView Plug-In.

-(void)createChildViewsForQuinceObjectController:(QuinceObjectController
*)mc;

quince

87

Creates ChildViews for the given controller in all ContainerViews, that the receiver's
content object is currently being displayed in.

-(void)registerContainerView:(ContainerView *)view;

Tells the receiver about a ContainerView displaying the receiver's content object.

-(void)unregisterContainerView:(ContainerView *)view;

Removes view from the list of ContainerViews displaying the receiver's content ob-
ject.

-(NSSet *)registeredContainerViews;

Returns an array of all ContainerViews currently displaying the receiver's content ob-
ject.

-(void)createNewObjectForPoint:(NSPoint)location inView:(ContainerView
*)view;

Creates a new SubObject for the receiver. Called when the user double-clicks in an
empty region of a ContainerView.

-(void)removeObjectWithController:(QuinceObjectController *)mc
inView:(ContainerView *)view;

Tells view to remove the ChildView representing the object controlled by mc and re-
moving it from the receiver's object's subObjects.

-(void)addObjectWithController:(QuinceObjectController *)mc
inView:(ContainerView *)view;

Tells view to create a ChildView for mc and adds mc's content object to the re-
ceiver's content object's subObjects.

-(NSNumber *)offsetForKey:(NSString *)key;

Returns the offsetValue for the given parameter.

-(BOOL)isDisplayed;

quince

88

Returns a boolean indicating whether the receiver is currently loaded in any Con-
tainerViews.

-(void)prepareForDisplayInView:(ContainerView *)view;

Performs preparation for the display in a ContainerView. Updates the offsets for the
parameters on the x- and y- axis of the view.

-(void)initContentWithXMLDictionary:(NSDictionary *)dictionary;

Initializes the receiver's content object with the parameter values in the given dic-
tionary object.

-(void)sortChronologically;

Sorts the receiver's content object's subObjects by the key start.

-(QuinceObjectController *) controllerOfNextSubObjectAfterController:
(QuinceObjectController *)mc;

Returns the controller of the receiver's content object's subObjects which is the di-
rect sucessor of mc's content object.

-(QuinceObjectController *) controllerOfPreviousSubObjectBeforeControl-
ler: (QuinceObjectController *)mc;

Returns the controller of the receiver's content object's subObjects which is the di-
rect predecessor of mc's content object.

-(void) toggleMute;

Mutes or unmutes the receiver's content object.

-(void)registerChildView:(ChildView *)child;

Tells the receiver about a ChildView representing the receiver's content object.

-(void)unregisterChildView:(ChildView *)child;

Removes child from the list of ContainerViews displaying the receiver's content ob-
ject.

quince

89

QuinceDocument Reference

This is just a little selection of methods that might be useful to you. If you need something
that is not covered here, you might want to check the header file.

-(QuinceObjectController *) controllerForNewObjectOfClassNamed:
(NSString *)name inPool:(BOOL)addToPool;

Creates a new object of the specified type if it exists, adds the new object to the ob-
ject pool if addToPool is YES and returns the new object's controller. You can al-
ways get to the actual object by calling [QuinceObjectController content].

-(QuinceObjectController *) controllerForCopyOfQuinceObjectController:
(QuinceObjectController *)mc inPool:(BOOL)addToPool;

Creates a copy of the object controlled by the given controller, adds the new object
to the object pool if addToPool is YES and returns the new object's controller.

-(void)addObjectToObjectPool:(QuinceObject *)quince;

If the given object is not already stored in the pool, this method adds it to the object
pool.

-(void)removeObjectsWithControllers:(NSMutableArray *)controllers
forGood:(BOOL)b;

Removes an object from the pool. If b is YES, the object will be removed from any
QuinceObjects of which it is a subObject, too.

-(void)play;

Starts playback of the current session.

-(BOOL)isPlaying;

Returns a boolean indicating whether quince is currently playing back the session or
not.

-(NSNumber *)cursorTime;

Returns the time specified by the cursor in the main window.

quince

90

-(void) setProgressTask:(NSString *) task;

Sets the string displaying the current task in the progress panel to the given string.

-(void) setIndeterminateProgressTask:(NSString *) task;

Sets the string displaying the current task in the progress panel to the given string
and changes the progress bar's state to indeterminate.

-(void) displayProgress:(BOOL) display;

Displays or hides the progress panel.

-(void) setProgress:(float)progress;

Sets the progress bar to the given point. The progress is described in percent.

-(void) presentAlertWithText:(NSString *)message;

Creates and displays an alert panel with the given error message.

-(QuinceObject *)objectWithValue:(id)value forKey:(NSString *)key;

Returns any object that has the given value stored for the given key.

-(NSNumber *)durationOfLongestObjectInPool;

Returns an NSNumber object set to the duration of the QuinceObject with the high-
est value for the key duration.

-(id)valueForKeyPath:(NSString *)keyPath;
-(id)valueForKey:(NSString *)key;
-(void)setValue:(id)aValue forKey:(NSString *)aKey;

KVC methods. If you don't know what KVC means, please have a look at the "Key-
Value Coding Programming Guide" that comes with the Apple Developer Documen-
tation.

quince

91

-(void)performFunctionNamed:(NSString *)functionName
onObject:(QuinceObject *)target;

Performs the FunctionPlug-In with the given name (if it exists) on the given object. If
the designated FunctionPlug-In needs more than one input object, the operation
fails. Use with care.

quince

92

Appendix

A: Reserved Parameter Identifiers.

KEY Description

_defaults for future implementation of object defaults

amplitude

audioFile

audioFileName

cent

color

compatible the compatibility of functions and objects

date creation date of the object

description

dictionary the dictionary itself

duration

envelope

filePath of a dataFile

frequency

frequencyOffset

frequencyB

frequencyBOffset

glissandoDirection

id unique identifier

inputDescriptors for functions

isFolded BOOL

quince

93

KEY Description

mediaFileName

mediaFileStart

muted BOOL

name

nonStandar-
dReadIn

for objects which need special initialization

object self

offsetKeys an array containing the parameter keys of all
the parameters able to create offsets

output function internal...

pitch

pitchOffset

pitchF pitch information in float: integer part is midi
pitch, float part is cent deviation

pitchFOffset

pitchRange

pitchRangeOffset

registeredLinke-
dObjectIDS

mediaFile internal...

registeredLinke-
dObjects

mediaFile internal...

resampled envelope

result function internal...

samplesPerWin-
dow

envelope

sampleRate

source

sourceDescriptors

quince

94

KEY Description

start

startOffset

subObjects

superObject

target

targetDescriptors

targetPurpose

targetType

type

volume

volumeOffset

windowDuration envelope

xmlDictionary xml-compatible version of the dictionary

quince

95

